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We derive the effective action for superconducting fluctuations in a four-band model for pnictides, discuss-
ing the emergence of a single critical mode out of a dominant interband pairing mechanism. We then apply our
model to calculate the paraconductivity in two-dimensional and layered three-dimensional systems and com-
pare our results with recent resistivity measurements in SmFeAsO0.8F0.2.
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The recent discovery of superconductivity in pnictides1

has renewed the interest in high-temperature superconductiv-
ity. Pnictides share many similarities with cuprate supercon-
ductors, e.g., the layered structure, the proximity to a mag-
netic phase,2 the relatively large ratio between the
superconducting �SC� gap and the critical temperature Tc,

3,4

and the small superfluid density.2 However, different from
cuprates, the presence of several sheets of the Fermi surface
makes the multiband character of superconductivity an un-
avoidable ingredient of any theoretical model for pnictides.
Moreover, since the calculated electron-phonon coupling
cannot account for the high values of Tc,

5,6 it has been sug-
gested that the pairing glue is provided by spin fluctuations
exchanged between electrons in different bands.6–8 Thus,
pnictides are expected to be somehow different from other
multiband superconductors �e.g., MgB2� where the main cou-
pling mechanism is intraband.9

This scenario raises interesting questions regarding the
appropriate description of SC fluctuations in a multiband
system dominated by interband pairing. The issue is relevant
because fluctuating Cooper pairs above Tc contribute to sev-
eral observable quantities, such as, e.g., the enhancement of
dc conductivity �paraconductivity� and of the diamagnetic
response as Tc is approached.10 The nature of SC fluctuations
depends on whether the system is weakly or strongly coupled
�and on whether preformed pairs are present or not�, and a
wealth of physical information can be obtained from para-
conductivity and diamagnetic response, provided a theoreti-
cal background is established to extract them.

In this Brief Report, after introducing a four-band model,
as appropriate for pnictides, we discuss the subtleties related
to the description of SC fluctuations in a system with domi-
nant interband pairing. We then apply our results to compute
the paraconductivity associated with SC fluctuations above
Tc. We show that when interband pairing dominates, despite
the presence of four bands, there are only two independent
fluctuating modes. Only one of them is critical and yields a
diverging Aslamazov-Larkin �AL� contribution to paracon-
ductivity as Tc is approached, similarly to the case of domi-
nant intraband pairing.11 The temperature dependence of the
AL paraconductivity is the same derived for ordinary single-
band superconductors.10,12 Remarkably, within a BCS ap-
proach, we recover the AL numerical prefactor, which is a
universal coefficient in two dimensions and depends instead
on the coherence length perpendicular to the planes in the
three-dimensional �3D� layered case. We also find that sub-

leading terms with respect to the leading AL contribution
could distinguish between dominant interband and intraband
pairings. Within this theoretical background, we analyze re-
cent resistivity data in SmFeAsOF �Ref. 4� and discuss the
results.

At present, angle-resolved photo emission spectroscopy
�ARPES� measurements in pnictides3 confirmed the Fermi-
surface topology predicted by local-density approximation. It
consists of two holelike pockets centered around the � point
�labeled � and �, following Ref. 3� and two electronlike ���
pockets centered around the M points of the folded Brillouin
zone of the FeAs planes. Motivated by the magnetic charac-
ter of the undoped parent compound and by the approximate
nesting of the hole and the electron pockets with respect to
the magnetic ordering wavevector, we assume that pairing
mediated by spin fluctuations is effective only between hole
and electron bands.8 Since the � band has a Fermi surface
substantially larger than the � band, the � pocket is expected
to be less nested to the � pocket so that the interband �-�
coupling � is smaller than the �-� coupling �, i.e., �
�� /�	1. The two electron pockets have comparable sizes,
and for simplicity we assume that the � bands are degener-
ate. Therefore, the BCS Hamiltonian of our four-band model
is13

H = �
i

H0
i + ��

q
�
�,q

† �
�,q + �
�,q� + H.c.� , �1�

where H0
i =�k�i,kci,k�

† ci,k� is the band Hamiltonian, ci,k�
�+� an-

nihilates �creates� a fermion in the i=� ,� ,�1 ,�2 band �with
the twofold-degenerate � bands labeled as �1 and �2�, �i,k is
the dispersion with respect to the chemical potential, 
i,q
=�kci,k+q↑ci,k↓ is the pairing operator in the ith band, and

�,q�
�1,q+
�2,q. Since we assumed that pairing acts be-
tween hole and electron bands only, we can express the pair-
ing term in Eq. �1� by means of 
1�
� and 
2�
�

+�
�. Thus

HI = ��
q

�
1
†
2 + H.c.� = − ��

q
�
−

†
− − 
+
†
+� , �2�

where 
= �w1
1w2
2� /�2 and w1 ,w2 are arbitrary num-
bers satisfying w1w2=1, and for definiteness we take ��0,
which is the case for a spin-mediated pairing interaction.
From Eq. �2� one immediately sees that when interband pair-
ing dominates, the interaction is a mixture of attraction �for
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−� and repulsion �for 
+�. As a consequence, when we
perform the standard Hubbard-Stratonovich �HS� decoupling
of the quartic interaction term �Eq. �2�� by means of the HS
field �,

e�
†
 =� D�e−	�	2/�+�1�
†�+H.c.�, �3�

the HS transformation associated with the repulsive part con-
tains the imaginary unit. As we shall see below, this would
require an imaginary value of the �+ HS field at the saddle
point that can be avoided by the rotation of the pairing op-
erators 
 defined above via a suitable choice of the w1,2
coefficients.

In analogy with the single-band case,14 the effective ac-
tion for the SC fluctuations reads

S = �
i

�
k

�
�

��i,k − i�n�ci,k�
† ci,k�

+ �
q

 	�+�q�	2

�
− i�+

��q�
+�q� − i�+�q�
+
†�q��

+ �
q

 	�−�q�	2

�
− �−

��q�
−�q� − �−�q�
−
†�q�� ,

where k��k , i�n�, q��q , i�m�, and �n and �m are the Mat-
subara fermion and boson frequencies, respectively. Integrat-
ing out the fermions we obtain the standard contribution to
the action, −�iTr log Akk�

i , where the trace acts on momenta,
frequencies, and spins. The elements of the matrices Akk�

i are

�Akk�
i �11 = ��i,k − i�n��kk�, �Akk�

i �22 = − ��i,k + i�n��kk�

with i=� ,� ,�1 ,�2,

�Akk�
� �12 =

w2

�2
��−�k − k�� − i�+�k − k��� ,

�Akk�
� �12 = ��Akk�

� �12,

�Akk�
� �12 = −

w1

�2
��−�k − k�� + i�+�k − k���

for �=�1 ,�2 and the �Akk�
i �21 elements contain the complex

conjugates of the HS fields evaluated at �k�−k�.
The q=k−k�=0 values of the HS fields yield the SC gaps

in the various bands within the saddle-point approximation
��q=0�= �̄. However, due to the presence of the imagi-
nary unit i associated with the HS field �+, in general
�Akk

i �21
� � �Akk

i �12. To recover a Hermitian A matrix at the
saddle point, the integration contour of the functional inte-
gral must be deformed toward the imaginary axis of the �+
field. This can be avoided if one chooses w1 and w2 in the
definition of 
 in such a way that �̄+=0. In our case, the
choice �̄+=0 gives ��=−w2�̄− /�2, ��=w1�̄− /�2, and ��

=���. Hence, the ratio of the gaps in the two hole bands is
solely determined by the ratio of the couplings, �� /��=�.
Using w1w2=1 we have �̄−

2 =−2���� and the equations for
�� and �� read13

�� = − ��2�����, �4�

�� = − ������ + ������ , �5�

where �i=Ni�0
�0d��tanh�Ei /2T�� /Ei yields the q=0 value of

particle-particle bubble when T�Tc, Ni is density of states of
the ith band at the Fermi level, �0 is the cutoff for the pairing
interaction, and Ei=��2+�i

2. Hence, our four-band model for
pnictides effectively reduces to a two-band model with one
electronlike and one holelike effective bands. Indeed, defin-
ing �1���, �2���, �1�2��, and �2���+�2��, Eqs.
�4� and �5� recover the standard two-band expression �1=
−��2�2 and �2=−��1�1. Since �1 /�2=−w1 /w2, it also
follows that w1

2 /w2
2=�2 /�1 at T	Tc.

Let us now discuss the SC fluctuations for T�Tc, where
�1,2=0. To derive the equivalent of the standard Gaussian
Ginzburg-Landau functional,10 we expand the action up to
terms quadratic in the HS fields, SG
=����q��

��q�L��
−1�q����q�, where � ,�= and

L−1�q� = �−1 − �eff�q� − i�eff�q�
− i�eff�q� �−1 + �eff�q�

� , �6�

with

�eff�q� �
1

2
�w1

2�1�q� + w2
2�2�q�� ,

�eff�q� �
1

2
�w1

2�1�q� − w2
2�2�q�� .

The critical temperature is determined by the condition
det L−1�q=0�=0. In the BCS approximation �i�0�
=Ni ln�1.13�0 /Tc� and, in agreement with the Eqs. �4� and
�5�, we obtain Neff� log�1.13�0 /Tc�=1. Here, the parameter
Neff��N1N2=�2N��N�+�2N�� plays the role of an effective
density of states. To compute the fluctuation contribution to
the various physical quantities at T�Tc, we evaluate Eq. �6�
at leading order in q �hydrodynamic approximation� using
the standard expansion of the particle-particle bubble for a
layered system, �i�q���i�0�−ci,�q�

2−ci,zqz
2−�i	�m	, with q�

2

=qx
2+qy

2 and the z axis perpendicular to the layers. In the
BCS approximation, e.g., �i=�Ni / �8T�. We omit the
lengthier but standard BCS expressions for ci,� and ci,z �see,
e.g., Ref. 10� that will not be explicitly used in the following.
By making for T�Tc the same choice previously adopted for
T	Tc and w1

2�1�0�=w2
2�2�0�, we simplify the structure of

the fluctuating modes. Indeed, with this choice, the off-
diagonal terms in Eq. �6� yield contributions beyond hydro-
dynamics and can be neglected. Therefore, the leading SC
fluctuations are described by

L−1�q� � m− + ��q� 0

0 m+ − ��q�
� , �7�

where m=�−1��1�2 are the masses of the collective
modes, ��q��c�q�

2+czqz
2+�	�m	, c� = �w1

2c1,� +w2
2c2,�� /2 is the

stiffness along the layers, cz= �w1
2c1,z+w2

2c2,z� /2 is the stiff-
ness in the direction perpendicular to the layers, and �
= �w1

2�1+w2
2�2� /2 is the damping coefficient. In the BCS
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case m=Neff�ln�1.13�0 /Tc� ln�1.13�0 /T�� and �
=�Neff / �8T�.

Having deduced the hydrodynamic action of the SC fluc-
tuations, we can calculate the paraconductivity along the
lines of Ref. 15. By inspection of Eq. �7�, one can see that
only the �− mode becomes critical at Tc �i.e., m−�Tc�=0 and
m+�Tc�=2�−1�, thus giving a diverging fluctuation contribu-
tion to various physical quantities when T→Tc. The leading
contribution to the current-current response function along
the layers is

������ = 4e2T�
q

c�
2q�

2L−−�q,�m�L−−�q,�m + ��� ,

whence the paraconductivity ��AL= �Im ����� /���→0 is
obtained after analytical continuation of the Matsubara fre-
quency �� to the real frequency �. Therefore, the same ex-
pressions known for a single-band superconductor are found
although with the effective parameters m− ,cz ,�. The para-
conductivity along the layers is independent of the in-plane
stiffness c� as guaranteed by the same gauge-invariance ar-
guments discussed in Ref. 15 for a single-band supercon-
ductor. The leading contributions to paraconductivity along
the layers in three and two dimensions �3D and 2D, respec-
tively� take the AL form12

��AL
3D =

e2

32��z

1
��

, �8�

��AL
2D =

e2

16�d

1

�
, �9�

where �z=�cz /� is the correlation length in the direction per-
pendicular to the layers, d is the distance between layers, and
��T���m−�T� / �8�T� is the dimensionless mass of the criti-
cal collective mode. We point out that the above expressions
are general within a hydrodynamic description of the collec-
tive modes and do not rely on any particular assumption
about the pairing strength.15 When the BCS expression for
the �i bubbles holds, m−�T�=Neff ln�T /Tc� and the dimen-
sionless mass appearing in Eqs. �8� and �9� is simply �
=log�T /Tc�.

The calculated AL paraconductivity expressions �8� and
�9� can be now compared with the existing results for the
pnictides. As it has been widely discussed in the context of
cuprates16 for weakly coupled layered materials the SC fluc-
tuations usually display a 2D-3D crossover as Tc is ap-
proached. However, the interlayer coupling has a different
relevance in the various families of cuprates with substantial
3D behavior �Eq. �8�� in YBa2Cu3O6+x samples, while more
anisotropic Bi2Sr2CaCu2O8 or La2−xSrxCuO4 compounds
show 2D fluctuations �Eq. �9��, the 2D-3D crossover being
too close to Tc to be clearly observed. Such a systematic
survey has not yet been performed in the case of pnictides
due also to the limited availability of clean single crystal.
Indeed, the analysis of the 2D-3D crossover might be biased
in polycrystals by the distribution of critical temperatures
and by the mixing of the planar and perpendicular directions.

Having in mind such limitations, we attempt the analysis
of paraconductivity in a SmFeAsO0.8F0.2 sample4 with Tc

�52 K. To determine the contribution of SC fluctuations to
the normal-state conductivity, ����−1−�N

−1, we need to ex-
tract the normal-state resistivity �N from the data. Owing to
the diverging conductivity, the precise determination of the
normal-state contribution is immaterial near Tc but becomes
relevant for larger values of �. We fitted the resistivity at high
temperature �in the range between 279 K, the highest avail-
able temperature, and about 200 K�, checking that the quali-
tative results were stable upon small variations in the range
of temperatures chosen for the high-temperature fit. We used
a quadratic fit �N=a+b�T−T0�+c�T−T0�2, with T0=279 K
and found that the resulting paraconductivity is roughly 2
orders of magnitude smaller than the 2D AL result �Eq. �9��.
The slope in a log-log plot is in agreement with the 3D
power law �Eq. �8��. The plot in Fig. 1 clearly shows that the
3D behavior extends over two decades of �. The fitting pa-
rameters a=1700 �� cm, b=21.9 �� cm /K, and c
=0.018 �� cm /K2 were used.

The fitting with Eq. �8� allows us to determine the precise
value of Tc and the coherence length �z of the SC fluctuations
in the direction perpendicular to the FeAs layers. We find
Tc=51.4 K and �z=19 Å. One can also see that substantial
SC fluctuations persist up to ���T−Tc� /Tc�0.4, i.e., up to
20 K above Tc. This fluctuating regime is therefore much
larger than in conventional 3D superconductors and, despite
the 3D behavior of the paraconductivity, calls for a relevant
character of the layered structure and for a small planar co-
herence length. We point out that at even larger values of �
the paraconductivity drastically drops in analogy with what
found in cuprates �see, e.g., Ref. 16 and references therein�.
The way paraconductivity deviates from the AL behavior in
multiband systems also depends on the role of the other
�noncritical� collective modes. In particular, it can be
shown17 that when the intraband pairing is equally dominant
in all bands, the paraconductivity mediated by the noncritical
modes may become sizable and the experimental data should
approach the pure AL contribution of the critical mode from
above. This is not the case when the dominant pairing is
interband and therefore it is not surprising that the data for
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FIG. 1. �Color online� Comparison between the experimental
paraconductivity for a SmFeAsO0.8F0.2 sample studied in Ref. 4
�blue circles� and the 2D �dashed line� and 3D �solid line� expres-
sions of the AL paraconductivity �Eqs. �8� and �9��. For the 3D
paraconductivity a coherence length �z=19 Å has been used while
for the 2D case the structural distance between layers d=8.4 Å has
been inserted.
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the pnictide sample analyzed in this Brief Report always lay
below the AL straight line in Fig. 1.

In conclusion, we investigated the occurrence of SC fluc-
tuations in a multiband system where interband pairing
dominates as appropriate for pnictides. In contrast to the case
of dominant intraband mechanism �as, e.g., in MgB2 �Ref.
11��, in the present situation the HS decoupling must be ac-
companied with a proper rotation of the fermion fields which
guarantees a Hermitian saddle-point action below Tc. The
same rotation leads to a straightforward decoupling of the
Gaussian fluctuations above Tc in the hydrodynamic limit.
Thus, despite the apparent complexity of the multiband
structure in pnictides, we demonstrate that the AL expres-
sions for paraconductivity stay valid not only as far as the
functional temperature dependence is concerned but also re-
garding the numerical prefactors. While in the BCS 2D case

the prefactor stays universal in the 3D case the only differ-
ence is that a suitable redefinition of the transverse coherence
length has to be introduced. With this equipment, we consid-
ered the experimental resistivity data of the SmFeAsO0.8F0.2

sample studied in Ref. 4, finding that here fluctuations have a
3D character and extend far above Tc. Recently, an experi-
mental work18 on fluctuation conductivity in pnictides con-
firmed the wide fluctuating regime even though fluctuations
seem to have 2D character. Thus, further experiments are in
order to confirm the nature of fluctuations in pnictides and to
assess the relevance of Cooper-pair fluctuations in these new
superconductors.
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